
General Temporal Knowledge for Planning and

Data Mining

Robert Morris (1) Lina Khatib (2)

(l) Research Institute for Advanced Computer Science

(2) Kestrel Technology

NASA Ames Research Center

Moffett Field, CA 94035

{ morris,lina} _ptolemy. arc. nasa.gov

Abstract

We consider the architectureof systems that combine temporal plan-

ning and plan execution and introduce a layerof temporal reasoning that

potentiallyimproves both the communication between humans and such

systems, and the performance of the temporal planner itself.In particular,

this additional layer simultaneously supports more flexibilityin specify-

ing and maintaining temporal constraints on plans within an uncertain

and changing execution environment, and the abilityto understand and

trace the progress of plan execution. It is shown how a representation

based on singleset of abstractions of temporal information can be used

to characterize the reasoning underlying plan generation and execution

interpretation.The complexity of such reasoning isdiscussed.

1 Introduction

As AI systems continue to mature, they are more often found supporting real

world applications• These applications commonly require the performance of a

multitude of intelligent tasks. For example, planning systems i are currently

often found in automated or limited mixed-initiative systems that combine plan

generation and execution [17],[4].Designing and developing representations for

such continual planning systons raise challenging issues in temporal reasoning.

For example, can a single representation of time be used for both plan generation

and automated control of execution? Similarly, can a single representation of

time be used by an automated system to formulate long-range plans to be

IAlthough plans are often distinguished from schedules in the literature, the distinction is
not important for our purpomm here; consequently, the notion of "planning" used here should

be interpreted broadly enough to include scheduling
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executed automatically, and t,} int,.'rpr(:t atl(l summarize th(:ir _:xecuth)rx b;_sed

on s_ored traces? It is tile latter question that is addressed and answered here.

The planning problems of interest here can be formulated as those involving

a number of ta_ks, many to be executed a number of times during the planning

period, as well as constraints on those tasks, and possibly an objective to be

optimized. There is uncertainty and uacontrollability in the execution environ-

ment, as well as incompleteness [n the temporal domain model. The planner

must continuously generate plans for executing these tasks continuously over
time.

The following are examples of this kind of planning problem:

1. Telescope Observation Scheduling [2] Telescope time for the purpose

of observing time-varying phenomena (e.g. eclipsing binary stars) is re-

quested by an astronomer. An astronomer's scientific agenda (e.g., to fill

out a light, curve for a binary star system), imposes various constraints;

for example, on the number of observations and on the number of nights

between successive observations. Thus, an astronomer might request that

a given number of repeated observations (specified by an ideal and min-

imum occurrence count) be executed within a given time window with a

given time gap between observations. The ideal gap (in days) is speci-

fied either with a fixed gap length or a gap probability distribution (in

order to reduce aliasing in the data or determine the period of a recently

discovered variable star). An example of a gap probability distribution

would be expressed as "gaps should be randomly selected with a uniform

probability from the set { 0 days, 1 day, 2 days }".

2. Maintenance Scheduling of Power Generating Units [8] A power

plant consists of a number of power generating units which can be in-

dividually scheduled for preventive maintenance. The duration of each

unit's maintenance period and the power demand of the plant are known.

The maintenance scheduling problem is to determine the duration and

sequence of outages of power generating units over a given period, subject
to various constraints.

3. Planning Autonomous Spacecraft Operations In this planning

problem, [17], there are a set of tasks involving some operation of the
spacecraft, each associated with an interval of time. Each interval of a

given type must satisfy a contextual constraint (called a compatibility)

that is specific to the type. The contextual constraint surrounds the given
primary interval with a set of satellite intervals of specified types that

stand in specified temporal relationships to the primaries. For example,

every occurrence of a Thr_t(B) interval (thrust in direction B) must be

contained_by some occurrence of a Point(B) (point in direction B) interval.

The formulation of each of these problems involves a specification of a set

of events including many that will, in any solution to the problem, have multi-



ph:,)(:currea(:e._(e.g.,observingaparticularstar,perform,m('eof amaintenance
t;_k for ageneratingunit, thrustinginacertaindirection}.Thetotal number
of occurrencesof suchaneventcannotalwaysbesaidto beknownin advance;
for example,it mightbe thecasethat thesystemisto ma.,¢imizethenumber
of occurrencesof theevent.Similarly,constraintsonthoseeventsaremeantto
applyto anyoccurrenceofthoseevents;forexample,in thetelescopeproblem,
the gap constraint is meant to apply to each gap between observation occur-

rences. In this paper, constraints associated with events that will have multiple

instances in any solution are called general constraints, since they are naturally

formalized ms quantified formulae over temporal objects.

This paper addresses potential requirements of temporal reasoning systems

that perform continual planning. Specifically, to ensure the ability to continually

generate useful and robust plans, it might be necessary to have a mechanism

for evaluating segments of plans previously generated, and, where necessary,

update the temporal domain model used in planning. Relatedly, there should

be a mechanism for automatically summarizing and interpreting the executions

of plans, for purposes such as

• verifying a temporal model of the domain, to ensure that the constraints

identified for the problem are correct and complete; and

• identifying interesting episodes that reveal unexpected features of the en-

vironment, which can be applied to refine the domain model.

A simplified architecture for a system for continual planning is found in Figure 1.

This figure shows a set of requests that certain tasks be performed, at certain

times, which are collected together in a request database, which is, in turn,

compiled into a set of tasks to be performed. The requests might be inputs from
human users, or some other autonomous system. A plan generator consults this

database, as well as a temporal domain model, and produces input in the form of

a task database. The temporal planner generates a complete plan (represented

in the figure by a graph of temporal dependencies), or determines that its input

is inconsistent.

The next phase of the planning process involves the execution of a plan.
A plan runner continuously consults the current plan and executes the tasks

that axe currently active, i.e., whose conditions for execution are met. (The

actual plan execution process might be quite complex, involving a number of

other human or machine agent:.) A trace of the plan execution is kept in &
e_ecut/on /o,3, time-stamped information about the tasks actually performed.

The log database might also contain information about the effects of the plan,
which are observed in the world. An execution analysia tool consults this log,

and generates summaries of the plan execution, and also potentially generates
updates to the temporal domain model. Note that since the focus here is on

time, there are simplifications to the overall picture applied here. Planning in

general involves the manipulation of non-temporal constraints, such as resource
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Figure 1: Intelligent continuous planning and execution

constraints, as well as temporal ones. We abstract from considerations of non-

temporal information, but maintain that they can be added by generalizing the
proposed framework to include them.

This paper proposes a single representation of time to support the capabil-
ities just described. The framework integrates previous work in temporal rea-

soning about repeating events, [16], [13], [14], as well as in temporal constraint
reasoning. It also proposes the use of temporal data mining technology in order
to interpret the temporal information found in plan executions. We demon-
strate how a single formalism can simultaneously support plan generation from
general temporal constraints and execution interpretation from execution logs.
The basis for this formalism is a straight-forward and intuitive collection of ab-
stractions of temporal information, based on terminology that is common in the
research literature on constraint-based temporal reasoning. The pivotal level of
abstraction, based on the concept of a "profile", is a concise representation of
distance or temporal order information among sets of intervals. Profiles exhibit
patteras that can be used for determining cousistency of a set of constraints,
forming the basis for solving the planning problem, or for detecting useful tem-
poral patterns, useful in formulating expressions of general temporal knowledge
from raw, time stamped data.

The remainderofthispaperisstructuredas follows.In sectiontwo,there

isa discussionofthegeneralnatureoftemporalreasoning,forthe purposeof

settingthestagefortheremainderofthepaper.There isalso,inthesame sec-

tion,a briefsummary ofthecomponentsoftherepresentationalmechanism for
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re;L_oning ablaut general temporal knowledge. [n section three, there is a concise

but detailed discussion of the use of this framework for turning general temporal

knowledge into input to temporal constraint reasoners. Finally, in section four,

there is a discussion of how a data mining tool can be designed to generate

general temporal knowledge from traces of executions stored in a flat format

called instantiations, using profiles as a concise intermediate representation.

2 Framework

Pure temporal reasoning is reasoning about temporal entities such as points or

intervals. The reasoning is used primarily to infer knowledge about temporal lo-

cations, i.e., when something happens, durations (i.e., how long something lasts),

or temporal or&rings (i.e., what follows what)• Temporal reasoning should be

distinguished from a more broad class of reasoning, which we will call reasoning

about temporal entitieJ. By a temporal entity is meant, roughly, any entity that

can be viewed an being extended in time. Events are the simplest example of a

temporal entity, but there may be others, such as the state of an object, or the

truth of a proposition.

It may seem obvious, but it is worth stating explicitly: one can reason

about temporal entities without the reasoning being temporal in nature. The

Yale Shooting Problem, for example, involves reasoning about events, but the

reasoning is not temporal, since the orderings and durations are either known

(hence, no need to infer them) or unimportant; rather the reasoning is about

the causal effects of firing a gun. Similarly, much of the body of research that

goes under the title temporal data mining does not involve mining temporal

information. For example, time series analysis is a form of temporal data mining,

but the knowledge gained from this analysis is not temporal in nature, i.e.,

it is not about durations or temporal orderings. That part of temporal data

mining which is purely temporal sometimes goes under the heading mining for

interesting episodes [gj.

2.1 Pure temporal reasoning

The focus here is on pure temporal reasoning for planning, i.e., reasoning ,,bout

things Uke durations and temporal orderings for the purpose of generating tasks

to perform. Of course, on some level, it is artificial to distill pure temporal

reasoning from any real reasoning problem involving temporal entities. In prac-

tice, a model of time is inextricably linked to other kinds of world knowledge,

such as knowledge about space or causality. Nonetheless, traditionally it has

been found useful in mathematics and computer science to study properties of

time independently. From a computational standpoint, the primary purpose of

isolating temporal knowledge is to study the complexity of temporal reasoning

in order to isolate tractable instances of temporal reasoning problems, or to
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develop effici(:nt approximate algorithms for solving _u(:h problems. Temporal

reasoning is relevant for proving properties of concurrent systems [24 I, querying

temporal information [101, or for solving hard planning problems.

Temporal reasoning requires an underlying theory, or model, of time. A

theory of time is a set of assumptions, expressed using a temporal logic, or as

a restricted first-order logic. A theory expresses unassailable truths about the

domain of discourse, addressing things like whether time is point- or interval-

based, discrete or continuous, infinite or finite in either the past or future, and

linear or branching. Such assumptions may be explicitly stated, or embedded

in the rules and procedures for manipulating propositions about time. A theory

might also state whether the set of occurrences of a temporal entity can be finite

or infinite, as well as the granularities of time (minutes, days, weeks, etc.) that

can be expressed in the language. Finally, as we will observe later, a model

of time may formulate answers to common sense questions like "what does it

mean, in general, for two events to occur close together, or frequently"?

The formal approach to be taken here, reflecting the focus on time used in

planning, can be viewed as an example of a first-order treatment of time. In

what follows, propositions about time quantify over intervals. Time is linear and

discrete, and intervals axe sets of integers. Events axe the only kind of temporal
entity in this model; they can be classified into types. Each event can occur

arbitrarily often; an occurrence of an event is described by the interval associated

with it. Quantification is sorted based on the type of temporal entity. For

example, in the expression Via 6 [E IE denotes all the occurrences of an event

of type E. Intervals, equivalently event occurrences, have distinguished start

and end times, which can be denoted by the functional expressions s(I_), e(I_).

For simplicity, intervals in a set I_ are assumed to be totally ordered by the

temporal relation be/ore (<); the expression/'_ (the jth interval, equivalently,
the jth occurrence of some event) is used to recover this ordering. Where there
is no ambiguity, we often abbreviate L, 6 I_ to .Jr, E I.

General temporal knowledge provides information about:

• the cardinality of IE, i.e., the number of times E occurs;

• temporal orderings (before, after, overlap, containment, etc.) between
occurrences; and

• temporal distancesbetween occurrences.

Quantificationover intervalsisan obvious mechanism for formulating general

temporal knowledge. For example, inadditionto being able tostatethat a pair

of occurrences I. and J._ are ordered by the relationmeet% we wish also to

be able to say that foreach occurrenceI, E IE there isan occurrence Jj E JF

such that Ii and J# are ordered by the relationmeet$ (in English, thiswould

be expressed as Es only meet Fs). Similarly,in addition to saying that the

distancebetween s(Ii)and s(Jl)is3 time units,the distancebetween 8(I2)and

• "_" '_, , r._ .).'_k, ,.
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Figure 2: A set of instantiations.

3(J_) is 4 time units, and s(I_) and s(J3) is 2 time units, we also want to say

that For each Ii E I there is a .I: E J such that the distance between s(I_) and

s(Ji) is in the interval [2, 4].

2.2 Representation

The framework here is based on the following succession of abstractions of tem-
poral information:

• An instantiation of a repeating event;

• A profile of a repeating event;

• A profile summary;, and

• A specification.

An example of an instantiation is found in Figure 2. There are five events,

labeled A-E, each with a finite number of non-overlapping occurrences, with
possibly different durations. Notice that the information contained in the figure

is equivalent to one in which the temporal information is stored in a table or

relation, where each tuple in the relation has the form (X, nl,n2), where X is

the event type, and [nl, n2] is the associated interval describing the time of the
occurrence.

Given an instantiation of a repeating event, duration (temporal distance) in-

formation can be completely represented in the form of a set of profi/e.$, of which

five can be distinguished: four in terms of time point combinations (end-start,

start-start, start-end, and end-end), and one which displays ordering informa-

tion about the intervals. For a finitely repeating event, each profile can be

viewed as a matrix. Figure 3 shows an instantiation of a repeating event with

three occurrences, and three profiles associated with it. Each value in a profile

is the difference z(lj) - y(Ii), where z, y E {s, e}, and I,, is the mth occurrence

of I. By convention these profiles are referred to using an expre_ion of the
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Figure 3: An iastantiation of a repeating event and three profiles.

form z(J) - y(I), where the I's index the rows of the profiles, and the J's the
columns. The other profile in the figure, called the order profile, summarizes all
the qualitative temporal relationships between pairs of occurrences of I.

The notion of profile can also be used to represent distance or order infor-
mation about pairs of occurrences of distinct repeating events I and J. Each

value of a distance profile is a difference Z(Ij) --y(J_), x, y E {s, e} between an
terminal point (start s or end e) of an occurrence of I and one of J. A value

Pt,#[i,j] of an order profile is the Allen relation between I, and Jj. We refer
to each of these profiles as part of the relative profile of two repeating events.
Again, five profiles can be distinguished, and, assuming both repeating events
have finite cardinality, the information can be depicted in the form of a matrix.

Figure 4 illustrates relative profiles.
Profiles have patterns that emerge from the underlying temporal structure

of the repeating event. Such patterns provide the basis for inferring new tem-
poral imowledge, or for extracting temporal information in response to a query.
For example, ha a distance profile of a finite repeating event with no o_rlap-
ping occurrences, each row is a sequence of either monotonically increasing or
decreasing values, as is each column. We call this the monotonicity requirement
of profiles. Note also that every qualitative profile for a non-overlapping se-
quence of intervals consists of a lower-left triangle of b relations, an upper-right
triangle of b/relations, and a diagonal of _. We call this the tr/-reg/ona/require-
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Figure 4: An instantiation of a pair of repeating event and three relative profiles.

meat for admissible qualitative profiles. Relative profiles of pairs of finite, non-

overlapping repeating events have monotonicity and tri-regional requirements

for admissibility as well. In addition, it is possible to characterize admissibility

for sets of profiles in terms of adherence to constraints imposed by two profile

operations, inverse and composition. The inverse PT, J of a distance profile Pt.g

where Pt j[i, j] = z(Jj) -Y(L)is the profile Pg.t where P g, t[j, i] = y( I, ) - z( Jj )

(I and J not necessarily distinct). In matrix format, the inverse of a profile

is the negative transposed matrLx, i.e., the one that results when the rows and

columns are reversed, and the corresponding distance values negated.

Profile composition o is defined between pairs of profiles Pt,2, Pg, tc, where

PLj[i,j] = y(Jj) - z(I_) and Pg.g[l,m] = z(Km) - z(Jt), z,y,z E {s,e}. The

result ofPt,2oPj, K is a profile Pt,K. A set P of profiles is admissible with respect

to composition if, for any subset of P consisting of three profiles of the form

Pt,J, PJ.K, Pt,K Pt,g[i, k] = Pi,j[i,j] + PJ, K_, k], for each j = 1... [[J[[, where

IlJII is the number of subintervals of J. An arbitrary set of profiles for a collection

of non-overlapping repeating events is admissible if each distance profile in the

set adheres to the monotonicity requirement for profiles, each qualitative profile

is tri-regional, and the set is admissible with respect to inverse and composition.
Given an admissible profile, it may be useful to summarize information con-

tained in it. h pro.fdesummary isa descriptionabout a subset of the values

contained in the profile.For example, a sentence likeIttook allo] the thnm

grasp meetings fiftydays to complete,sayssomething about the specificdistance

e(grnn)-s(gral), a singlevalueina profile.Alternatively,saying something like

Each J finished 5 hours after the completion of some I says something about a

set of distances of the form e(Jj) - e(IO. Finally, to say none o/the I's and J's
overlap is to say something about every value in a qualitative profile associated
with I and J.



We say that a profile satiafiea a summary. For example, the left-most profile

in Figure 4 satisfies the summary Every g 3tarts less than sLz t_me unity alter

wine [. In general, P sal;isfies s by virtue of a set of values in P. If PI.j[i,j 1

is such a value, then /, and Jj will be said to be correlated with respect to s.

Finally, a set S of profile summaries for a set E of repeating events will be called
a specification of E.

This completes the description of the representational framework that will

be used for both general constraint processing and execution summarization.

The following sections formalize each reasoning task within this framework.

3 Temporal Reasoning with General Constraints

for Planning

To solve the temporal planning problem, a specification (set of summaries) of

profiles will serve as input to a Repeating Event CaPs (RE-CSPs) [16]. An

RE-CSP is a CSP in which the variablesstand for featuresof profiles,and

summaries collectedintoa specificationare viewed as constraints.Solving an

RE-CSP consistsof generatinga set of admissibleprofilesthat satisfyallthe

summaries in the specification.

Here isan example ofan RE-CSP. Given a set2"ofevents,the setofvariables

in the RE-CSP is defined as {N(I),E(I),D(I),V I 3 J I.JD=.y},I,J E I,z,y E
{s,e}. The variable N(I) is used to constrain the number of occurrences of

a repeating event I. Thus the constraint N(I) E [3,6J U [10,20] states that
the number of occurrences of I is between either 3 and 6, or between 10 and

20. D(I) denotes the duration of an arbitrary occurrence of I; thus D(I) E

f4, 6] abbreviates V /', E I e(/_) - s(/i) • [4, 6]. Informally, this says that

each occurrence of I takes between 4 and 6 time units to complete. Third, let
E(I) stand for the distance between the end of the last occurrence of I and

the start of the first (called the extent of a repeating event). The constraint

E(I) E [30, 50] thus states that all of I should complete within 30 and 50 time

l,J {s, set of variables that standsunits. Fourth, let {V I 3 JDz, _, x, y E e}} be a
forthe distance between the startorend ofevery I and the startor end ofsome

J. Thus, the constraint¥ 1 3 JD_:_ E [4,10]abbreviatesthe first-orderformula

VIi • I 9 J# • J s(Jj) - 8(I_) E {4, 10], and says informally that every I
should start between 4 and 10 time units before the start of some J. Finally, a

variable of the form ¥I VJ R(I, J), where R is an Allen relation, refers to all the

values of a qualitative matrix. The constraint ¥ I ¥ J{b, b/}(l, J) abbrevi_es

the expression V/i E I V J# E J (/'i b J#) v (/i b/Jj), and states that there is
no overlap between any I and any J.
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3.1 Solving via concretization into a TCSP

A temporal planning problem can clearly be viewed as the problem of trans-

forming specifications into consistent instantiations. A consistent instantiation

is one all of whose profiles satisfy each of the summaries found in a specification.

We divide the operations involved in transforming specifications into temporal

plans into the following two-step operation:

1. "Concretization" a specification, and

2. Solving the resulting CSP.

The notion of concretization was first introduced in [16]. Intuitively, it is the

result of transforming an RE-CSP specification by assigning numbers to all

number variables and establishing correlations between pairs of sub-intervals

involved in a binary RE-CSP relation. Formally, for binary relations between

I and J of the form ¥I qJR., a correlation is a total mapping of indices of

subintervals from I into indices of subintervals of J. Thus, correlations assume

that the cardinality of I and J have been established. For example,

S = {N(1) 6 [I,51;N(J) 6 [3,61;D(I) E [I,2];¥ I BJDI,:J,6 [2,4]}

isa simple RE-CSP specification.Given the assignment N(I) = 4;N(J) = 5,

and the relationinS between I and J, a correlationcorl-,jisa set of pairsof

indices into sub-intervals of [ and J. One such correlation can be written

corl..,j(1) = 1; corl..,z(2) = 1; COrl...,j(3) = 2; COri_J(4 ) = 5.

The specified binary relation is transformed, given the number and correlation

assignment, into the conjunction

s(A) - s(I1) • [2,4] ^ s(A) - s(I_) • [2,4]^

s(J_.) - s(I3) E [2,4] A s(Js) - s(h) E [2,4].

A concretization of a RE-CSP specification S is a description of the result of this
transformation, for all number and relational constraints in S. For example, the

concretization (in predicate calculus notation) for the current example is

Ivff)= 4A IV(J)= 5As(X_)--aCJ,)E[2,41A

s(X_)- sCJ_)• [_,4]A...A s(h)- s(Js)E [2,4].

Viewing a concretizationC as a conjunctiveformula,C isconaiatentifthere is

an assignment to each variablez(lt) that appears in C that makes C true.

By a tr/ggerismeant the set of number assignments and correlationsthat

produced a given concretization.We writeST = C to describethe resultof _tp-

plyinga triggerT to a specificationS. Sinceeach RE-CSP specificationinduces
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Figure 5: Concretization of a specification into a STN.

a set oftriggers,thereisa one-to-many relationshipbetween specificationsand

concretizations.Since not allresultingconcretizationsare consistent,the search

problem arisesof findinga trigger(or alltriggers)that produces a consistent

concretization.Furthermore, as shown in [13],'thesizeof the search space of

triggersispotentiallyvery large,dominated by the number ofpossibleways of

mapping finitesetsintofinitesetsasimpliedby the V3 logicalform ofthe binary

constraints.The skeletalform of an algorithm fordetermining the consistency

of an RE-CSP isthe following,where T isthe set of alltriggersof 5'.

input :a specificationS ofan RE-CSP;

output :a consistentconcretizationC ifone exists.

begin

for eachT 6T

C := ST;

ifconsistent(C) then return C;
return fail

e.,d

Once a consistentconcretizationhas been found, the resultingproblem can be

solved by standard methods. For example, a concretizationof certaintypes of

RE-CSP can be dewed as & Simple Ternporal Problem (STP) [3],as demon-

strafed in [14]. The concretizattioninto a STN, for the specificationS found

in the previous section,and using the example triggerdiscussedthere,isfound

in Figure 5. In the figure,thereare fourpairsof nodes representingstartand
end points of I, and fivefor J. There are also labeledarcs between the end

points and the startpointsof J, concretizingthe constrainton duration found

inthe speci_cation.Finally,thereare labeledarcsbetween startpointsofJ and

12
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those of [, in a(:cordaa(:t_ with d_e mapping corl-.,j found in the trigger The

intervals on the edges _trc those found in the specification for the corresponding
constraint.

Although solving STPs can be done effectively, the overall problem of solving

RE-CSPs, which involves the former as a sub-problem, is demonstratively NP-

hard, except in the simplest of problems. In particular, the general problem

of solving RE-CSPs with relational constraints is NP-hard, as demonstrated in

[14J.

3.2 Solving RE-CSPs via Clustered Temporal Networks

Concretizations using STPs are "flat" in the sense of eliminating the distinction

between intervals that are part of the same repeating event and those that axe

not. With such concretizations the operations defined on profiles to determine

admissibility axe "compiled away" into propagation operations on TCSP net-

works. This section introduces an alternative representation that generalizes

the notion of profile and ma_pulates them explicitly.

This alternative representation is based on the notion of a partial profile.

A partial profile is a profile whose cells contain interval values. They will be

viewed as labels of edges that connect nodes of a network called a Clustered

Temporal Network (CTN). Each node in a CTN represents a single repeating

event. Triggers define the dimension of each partial profile, and constrain a

subset of profile values, based on the correlations established in the triggers.

Inverse and composition can be defined on partial profiles, generalizing these

operations as defined above for complete profiles.

To illustrate a CTN, consider the following specification:

I is a non-overlapping repeating event with three occurrences. J has
one occurrence. All of the durations of the Is and J is one time unit,

and there is a one time unit gap between successive occurrences of
the Is. The start of J is one time unit after the start of the first

I, one time unit before the start of the second I, and one time unit

after the start of the third I.

This specification derives from a class of RE,-CSP in which there axe, in addi-

tion to the variables introduced earlier, other variables which stand for specific

profile elements; e.g., D_:_[1, 2] stands for the distance s(J2) - s(It). This spec-
ification is inconsistent. To detect its inconsistency in a STN concretization,

a Single Pairs Shortest Path algorithm is applied, wherein the inconsistency is

determined in O(n _) steps. By contrast, Figure 6 displays the concretization of

the specification into a CTN. There are two nodes in the figure, representing
the 2 repeating events. Two edges axe labeled by partial profiles, a 3 x 3 matrix

representing duration constraints for occurrences of I (the diagonal), and the
other a 3 x 1 matrix representing the binary constraint between the Is and J.
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Figure 6: Concretization of inconsistent specification into a CTN.

Missing profilevalues are assumed to have the value [-oo,ool, signifyingno
distanceconstraintbetween them.

Detecting inconsistencyinCTNs can be performed by exploitingthe admis-

sibilityrequirements for profilesdiscussedearlier.In thisexample, clearlythe

monotonicity requirement isviolatedforthe partialprofileon the edge between

]"and 7. For partialprofiles,thisrequirementcan be roughly statedas follows:

there must exista complete profile(i.e.:ones with atomic values)selectedfrom

the intervalsin the partialprofile,which satisfiesthe requirement. Since the

only solutionfor the profileinquestionisone inwhich the valuesdecrease,then

increase,the monotonicity requirementisviolated.To check forviolationofthe

monotonicity and tri-regionaladmissibilityrequirements,O(N2M -_)checks are

made, where N isthe number ofnodes ofthe CTN, and M isthe largestnumber

of occurrences of any repeatingevent. This compares with O(n 3) checks on a

STP, wherc n isthe number ofstartor end pointsofallthe occurrencesof any

repeatingevent. Comparing theseworst-caseestimatessuggeststhat the ability

ofCTNs to outperform STPs inpracticedepends on the abilityto "cluster"the

reasoning probiam intoone involvinga smallnumber ofrepeatingevents.In this

case,N, the sizeofthe CTN, willbe small,and some ei_ciencyin determining

consistencyisexpected.

Checking for violationsof the monotonicityor tri-regionalrequirements for

admi_ibilityisanalogous toperforming arc consistencyin constraintnetworks,

insofaras only paths of length one are examined. A CTN that adheres to

monotonicity requirements isnot necessarilya network containingonly admis-

sibleproxies;the operationsofcompositionand conversemust alsobe preserved.

To make a singlecomputation of Pl • P2, where Pi, P2 are partialprofiles,a

totalof O(M _) comparisons must be made; thus,an entireCTN isexamined in

O(N2M s) time. Again, if the problem exhibits suf_cient clustering, in practice
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thisoperatio_lmightbeperformede[ficiently.
Inthissection,wehaveshownhowit ispossibletoextendexistingconstraint-

basedtemporalreasoningframeworksforplanningto incorporategeneraltem-
poralconstraintsconcerningthenumberof timeaneventis to occur,aswell
asconstraintson thesortsof temporalpatternsthat canbeexhibitedby the
events.This frameworkwill addressthedeficienciesfacedbyexistingsystems
insolvingthesortsof problemsthatweredescribedat theoutset•Thefocusto
thispointhasbeenonreasoningforthepurposeofgeneratingprofilesthatcol-
lectivelysatisfya collectionof summaries.Thissemanticrelationshipbetween
summariesandprofileshasa converserelationshipwhichformsthe basisfor
reasoningfroma profileor setof profiles,to asummary.Thisrelationshipis
examinedin thenextsection.

4 Mining Temporal Information

Thus fax, we have focused on the use of general temporal knowledge to gen-
erate temporal plans from requests formalized as RE-CSP specifications. The

focus in this section turns to the problem of extracting useful information from

the results of executing plans. The simple temporal ontology introduced above

recognizes events as the sole entity associated with time, such time being ex-

pressed as durations or ordering relationships. A temporal domain model is a

set of propositions expressing duration and ordering constraints over a set of

events• The interest in this section is using information about executions to
refine a temporal domain model, or to infer new information.

A number of reasoning tasks fit into the research area referred to as mining

temporal data, including event detection [9] (inferring the time certain important

events occur), trend discovery [5i (mining significant changes in the value of

some parameter) and activity monitoring [7] (noticing when a change in the
behavior of something has occurred). The interest in this paper has been on

pure temporal reasoning, which in the area of data mining will include mining

duration and temporal ordering information. In the KDD literature, this is

often referred to as mining interesting episodes in temporal data (11].
The problem to be considered here requires a system to take an execution

log consisting of an instantiation of a executed plan (i.e. a set of pairings of
times to events), and generate useful summaries of the temporal information

contained in it, or verify that some proposition, expressed as general temporal
knowledge by a human user, is true. This summary will be expressed in the

same language as that of the temporal domain model; hence summaries can

be used to update the model itself.For example, a summaxy might detect a

precedence ordering between events that was previouslynot expressed in the

domain model. Similarly,observed distances between pairs of events can be

expressed as a summary and added as new knowledge to the domain model.

Consequently, the system iscontinuouslyimproving the model of time used to
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gem:rate plums _ the result o[ its own planning activities.

4.1 Mining as operations on profiles

lnstantiations are fiat representations of temporal data, insofar as they have a
representation as a table of rows and columns. Profiles provide an intermediate
level of structure to these data by providing concise representations of distance

and ordering information. Two kinds of grouping occur in the transition from
instantiations to profiles: events are paired off based on their type, and also
paired off based on end points. This transformation allows for patterns to be
revealed. Summaries, which are the results of further operations on profiles, are
concise expressions of the patterns revealed in profiles.

Recall the operations of inversion and composition of profiles introduced
earlier. These were used in the definition of admissible profiles, which formalized

the solution to the planning problem involving general temporal constraints. To
this set of operations we introduce others that produce summaries out of proSles.

First, we distinguish between two kinds of summaries: value and correlatior_
Let Po be the space of admissible order profiles, and P_ be the space of admis-
sible distance profiles. One kind of simple value summary can be viewed as a
function _'b : ,Do -_ P(Z), i.e. from the space of possible distance profiles to a
subset of she Integers. Informally, these summaries return a subset of the values
in the distance profile. By contrast, qualitative value summaries are functions
of the form Vo : Po -_ P(A), where A is the set of Allen relations. Thus,
these summaries return the set of Allen relations in a profile. It is assumed

that there are functions for further modifying the sets returned by simple value
summary. For example, let .4 be a set of the Integers, and let rain(A), maz(A)
be the minimum and maximum of the values in A. Let the function range(A)

return the interval [rain(A), rnaz(A)], i.e., the range of values within .4. Simi-
larly, given a set A of Allen relations in a profile, let overlaps - some(A) return
the set of Allen relations in A that are not b or b/. These auxiliary functions

provide additional means of summarizing the values in the set returned by a
value summary.

Correlation summaries, by contrast, will be viewed as operations that return
sub-profile." of a profile. If a profile is viewed as a set of triples (I,, J_, val), a
sub-profile of P is any subset of this set of tuples. Hence, sub-profiles are
profiles, and correlation summaries are functions C : P _ P, i.e., from profiles
to profiles.

Here are some examples of each kind of summary. The instaatiation in Fig-

ure 7 will be used to illustrate. Figure 8 contains the order and one distance
profile generated from the instantiation. One example of a simple qualitative
value summary would be the set of all relationships between A and B.
This is a function that, given an order profile Po for A and B, returns the set
of Allen relations in Po; in the example, this set would be {b, hi, rn, si, fi, s}.
Similarly, the summary the distance between the start of some occur-
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0 I ,_ J 4 _ 6 7 ! 9 _0 13 I. _ IJ

Figure 7: An instantiation of two repeating events

m b b b b I 3 619 12

bi si b b b -2 0 3 J 6 9

bi J bi bi fi b -7 -5 -2 1 4

bi I bi bi bi s -11 -9 -6 -3 0

Figure 8: Order and distance (s(B) - s(A)) profiles for example in Figure 7

fence of A and the start of some occurrence of B isa value summary

that returns {-11,-9,-7,-6,-5,-3,-2,0, 1,3,4,6,9,12), i.e.,allthe values

in the distance profile.An example of a simple correlationsummary would be:

all the ordering relations between the firstand second occurrences

of A and B. This summary would return a 2 x 2 sub-profileconsistingof the

upper leftpart of the order profilein the figure.

Most summaries of interestcan be viewed as a seriesof compositions of

_ue and correlationsummaries. For example, consider the summary: the

range of distances between the start of every occurrence of A and the

start of the occurrence of B in closest proximity. Intuitively,this isthe

result of examining each row of the distance profile in Figure 8, extracting the

value(s) closest to 0, expressing the result as an range (interval) of values; in the

example, the result would be [0, 1]. Similarly, the set of pairs of occurrences
of As and Bs in closest proximity, and the distances between their

start times, can be viewed _ a correlation summary returning the sub-profile

comprised of elements along a diagonal of the input profile; specifically, the

set of triples {(AI, B1,1), (As, B2, 0), (A3, B4, 1), {A4, Bs, 0). No_.ice that this

summary reveals the pattern of alternating distances of 1 and 0 between start

times of the correlated occurrences, potentially of interest to the viewer of the
data.

4.2 Mining interesting temporal episodes

A simple two-step procedure for mining interesting episodes from an instantia-
tion is,first,to generate a profilefrom the instantiation,and second, produce

(or verifythe truth of) a summary from information found in the profile.This

basicprocedure can be refinedbased on the degree to which the user guides the
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mining process. Later in this section, we sample from a range of degrees of user
guidance.

First, notice that generating a single profile from an instantiation takes O(n _)
time, where n is the number of occurrences of the event with the most occur-

rences. More specifically, if E has n occurrence, and F has m occurrences, it

clearly takes n × m difference calculations to generate a distance profile. For

order profiles, each entry is generated by comparing both end points of one in-

terval with both end points of another. Hence, the overall cost of populating an

order profile is 4(m x n). This cost can be reduced if E and F are both sequences

of non-overlapping occurrences; then, it is possible to apply admissibility cri-

teria for profiles to generate values directly. For example, truths such as if I,,

ia before d,n, then it is before eve_ occurrence of d after d,,_ can be applied to

determine some of the entries without explicitly comparing end points. Thus,

in the firstrow of the order tablein Figure 8, once the firstb isdetected,the

remaining valuesin the row must be b in order forthe profileto be admissible.

In effect,the comparisons are therebylimited to entriesthat willbe along the

diagonal of the profile.

Once the profilehas been builtforthe indicatedevents,the remainder ofthe

calculationinvolvesinvestigatingthe temporal patternsexhibitedby them. Let

us considerthree degreesof userguidance in the process:complete, partial,and

none. Complete guidance occurswhen a user wishes to know whether a profile

satisfiesa summary. Recallthat a distance summary consistsof the following

parts:

1. A pair of events A, B;

2. A mapping expressed as a pair of quantifiers, one each for occurrences of

,..,, AorB;

3. A pair of end points z,y E {s,e}; and

4. An interva] [i, b] of values

An order summary substitutes a set of Allen relations for items (3) and (4) in

the list. Therefore, a completely guided mining activity would require the user

to supply each cf the four {3) components of a distance (order) summary. Notice

that the entire process of verifying the truth of a distance or order summary can

be conducted el_cientlyfor many of the examples we've been presenting.For

example, the interestmight be in determining how often the start of some B

immediately (i.e.within 1 _Ame unit)followsthe end ofsome A. This involves

examining each row ofthe distanceprofilein Figure 8,and counting how many

times the value I appears. Ingeneral,two complete perusalofa matrix su/_ces

for verification,one for creatingthe profile,the other for verifyingthe sum-

mary. (A more ei_icientprocedure would interleavethe creationand verification

process.)
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A simple w;ly of viewing partial user guidance t_ when a subset of the 4 com-

ponents of a distance summary (or the 3 of an order summary) are left unspec-

ified. Once this happens, issues related to criteria for the automatic detection

of mtere.sting temporal information arise. What makes temporal (duration or

order) information "interesting"7 We distinguish between two criteria.

First, there is a tendency for occurrences in close proximity to be the focus

of mining episodes. For example, the gap between consecutive occurrences of

the same event tend to be more interesting than the gap between occurrences

separated by other occurrences. Similarly, occurrences that happen around oc-

currences of other events tend to hold more interest than pairs of occurrences

separated by longer distances. The reason is usually due to the fact that mining

temporal summaries is often related to the goal of discovering causal relation-

ships, and these relationships tend to be revealed among occurrences in close

proximity. For example, the occurrence of high fever following the adminis-

tration of a certain treatment would be interesting information for a physician

(from a causal standpoint I only if the events occur in close proximity; if the two

events are separated by more than, say a few days, a different causal relationship

(involving other events 1 would be suggested.

Second, there is interest in temporal relationships only if there is a duration

or order information that falls into a pattern. A number of patterns are possible,

involving frequency, periodicity, or simple repetition. If fever follows a therapy

treatment with low frequency, there is less interest than if it is followed with

high frequency. Similarly. if there is no overlap between certain events, say,

between occurrences of maintenance tasks for different power generation units,

then this might fit the criteria for being interesting. Sometimes, it is the range

of values that is interesting; for example, if the set of all the durations between

two events is in [0, 1] a causal relationship between the occurrences might be
suggested.

What are the requirements for a system that can find interesting temporal

patterns without guidance of any kind? In addition to a temporal model of

proximity and frequency, a completely automated temporal knowledge discovery

system will need a model of "interesting pairings" of temporal entities. This
amounts to having a robust model of what temporal entities are naturally paired

with others. For example, in the medical domain, what makes adminbtering

drug events and fever states in patients conducive to associations is the fact that

theremay be causalrelationsbetween events similarto the drug administering

event and the onset of fever.Notice that there are o({M)) profilesassociated

with an instantiationof M events. Hence, the task of generating interesting

pairingsfrom raw data grows exponentiallywith the number ofevent types.The

work of Shahar [21]addresses the problem ofbuildingan ontology of temporal

entitieswhich guides the automated toolin the searchofinterestingpairings.

Finally,the preceding examples have been restrictedto cases which re-

quire producing information about binary relationshipsbetween events. This

treatment can be extended to patterns involving more than 2 events. For
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example, suppose the interest is in determining the frequency of the pattern

s(l,) - s(Jj) EII, l I^ s(Jj) - s(K,) E [I, l I. This pattern is that of the start of

an I immediately following the start of a J which, in turn, immediately follows

the start of some K. Clearly, this query can be solved by creating profiles for

both s(I,) -s(Jj) and s(Ji)- s(Kk), and examining the values therein. In gen-

era/, in many cases, it is possible to view the task of finding interesting episodes

among a set of n > 2 events as a set of examinations of (binary) profiles.

This section has described informally the process of extracting useful sum-
maries of temporal information in the form of instantiations of events. The

summaries arise from a two step procedure of, first, extracting the relevant pro-

file(s), and second, extracting genera/ temporal knowledge from them. Since

the knowledge extracted is of the same logical form as the knowledge used to

generate temporal plans, the extracted knowledge can be used to update the

knowledge found in the temporal domain model used by the planner. Conse-

quently, we have finished our description of a closed-loop system for temporal

planning and plan execution analysis.

5 Conclusions

This paper has proposed a single representation of temporal information for sup-

porting a more robust framework for formulating planning problems, as well as

to formulate summaries of execution traces of plans from execution logs stored as

temporal databases. This framework has the potential for proving useful within

systems that combine planning and plan execution, which are becoming more

common as AI technology continues to mature. The approach to realizing this

framework builds upon existing frameworks based on the CSP representation

of temporal reasoning problems. The proposed framework is based on a simple,

intuitive distinction between temporal specifications, summaries, profiles and

instantiations. The operations that transform specifications into instantiations

to solve planning problems can be inverted to formulate and solve the problem

of mining interesting temporal information.

The framework proposed in this paper uses the classical constraint-based

representation cf temporal knowledge. The classical framework considers all

solutions to be of equal value with respect to satisfying the requirements for

solving the problem, whereas the information extracted from the trace data

from executions might suggest a ordering of solutions based on frequency of oc-

currence. For example, although the temporal domain model might assert that

a certain pair of events can happen between 5 and 10 time units apart, based

on observations it can be determined that the distance is usually either 9 or 10

units apart. This additional knowledge could be used in the plan generation
phase to prefer solutions that reflect past observations such as this. There are

generalizations of of the classical CSP framework, e.g. the Semiring CSP repre-
sentation [19], that allow for the generation of solutions to CSPs that adhere to

20

o, . - ."



local preference criteria. We are currently investigating such extensions of the
proposed framework.
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